1,652 research outputs found

    Evaluation of Design Tools for Rapid Prototyping of Parallel Signal Processing Algorithms

    Get PDF
    Digital signal processing (DSP) has become a popular method for handling not only signal processing, but communications, and control system applications. A DSP application of interest to the Air Force is high speed avionics processing. The real time computing requirements of avionics processing exceed the capabilities of current single chip DSP processors, and parallelization of multiple DSP processors is a solution to handle such requirements. Designing and implementing a parallel DSP algorithm has been a lengthy process often requiring different design tools and extensive programming experience. Through the use of integrated software development tools, rapid prototyping becomes possible by simulating algorithms, generating code for workstations or DSP microprocessors, and generating hardware description language code for hardware synthesis. This research examines the use of one such tool, the Signal Processing WorkSystem (SPW) by the Alta Group of Cadence Design Systems, Inc., and how SPW supports the rapid prototyping process from an avionics algorithm design through simulation and hardware implementation. Throughout this process, SPW is evaluated as an aid to the avionics designer to meet design objectives and evaluate tradeoffs to find the best blend of efficiency and effectiveness. By designing a two dimensional fast Fourier transform algorithm as a specific avionics algorithm and exploring implementation options, SPW is shown to be a viable rapid prototyping solution allowing an avionics designer to focus on design trade-offs instead of implementation details while using parallelization to meet real-time application requirements

    Nucleon-Nucleon Scattering in a Harmonic Potential

    Full text link
    The discrete energy-eigenvalues of two nucleons interacting with a finite-range nuclear force and confined to a harmonic potential are used to numerically reconstruct the free-space scattering phase shifts. The extracted phase shifts are compared to those obtained from the exact continuum scattering solution and agree within the uncertainties of the calculations. Our results suggest that it might be possible to determine the amplitudes for the scattering of complex systems, such as n-d, n-t or n-alpha, from the energy-eigenvalues confined to finite volumes using ab-initio bound-state techniques.Comment: 19 pages, 13 figure

    Identifying prognostic structural features in tissue sections of colon cancer patients using point pattern analysis

    Get PDF
    Diagnosis and prognosis of cancer is informed by the architecture inherent in cancer patient tissue sections. This architecture is typically identified by pathologists, yet advances in computational image analysis facilitate quantitative assessment of this structure. In this article we develop a spatial point process approach in order to describe patterns in cell distribution within tissue samples taken from colorectal cancer (CRC) patients. In particular, our approach is centered on the Palm intensity function. This leads to taking an approximate-likelihood technique in fitting point processes models. We consider two Neyman-Scott point processes and a void process, fitting these point process models to the CRC patient data. We find that the parameter estimates of these models may be used to quantify the spatial arrangement of cells. Importantly, we observe characteristic differences in the spatial arrangement of cells between patients who died from CRC and those alive at follow-up
    • …
    corecore